

EURIPIDES FORUM in Helsinki June 15th-16th, 2011

SEAMOVES

Sensor Enabling Autonomous Motion By Optimized Visual Environment Sensing

Abstract

Navigation of small unmanned vehicles equipped with bulky laser scanners or visual sensors, demands computationally intensive algorithms A key to the development of autonomous systems market (cars, care or

assistant robots, security agents ...) is the availability of compact, low cost smart sensors for navigation.

Keywords

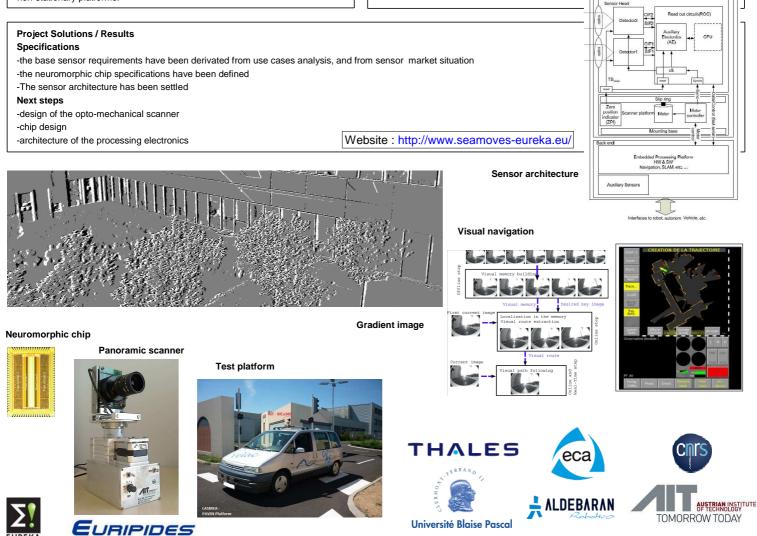
Smart sensor, neuromorphic chip, visual navigation, embedded processing, panoramic vision

Fields of Application

The main fields of application are autonomous systems (cars, automatic vehicles for factory automation...), assisted living (awareness, home robotic platforms ..), security and safety (area surveillance, anti-intrusion ...)

The functionality and performances will be tested on various robotic platforms The system will also be evaluated for security applications on stationary and non-stationary platforms.

Consortium overview / Complementaries / R&D chain


Around an innovative chip designer (AIT) , the consortium is composed of partners involved in sensors and subsystems design for imaging and robotics (Thales R&T, TOSA, LASMEA) and end users in the field of automation of vehicles (LASMEA, ECA, TOSA), or personal robotics and assisted living (Aldebaran)

Project objectives

Develop an innovative smart sensor for autonomous visual navigation based on a neuromorphic vision chip, 360° fast panoramic scanning Embed low-level processing, and intelligent navigation functions

Technical challenges

Optimize the linear detector : resolution, sensitivity, pixel rate Re-visit the processing for this innovative, event driven imager Develop a small-size, low consumption scanning system Optimize the processing architecture

